

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile
FOR

DUMmIES
‰

IBM LIMITED EDITION

by Scott W. Ambler and
Matthew Holitza

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies®, IBM Limited Edition
Published by
John Wiley & Sons, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2012 by John Wiley & Sons, Inc., Hoboken, NJ

Published by John Wiley & Sons, Inc., Hoboken, NJ

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the
prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley logo, For Dummies, the Dummies Man logo, A Reference for the Rest
of Us!, The Dummies Way, Dummies.com, Making Everything Easier, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. IBM and the IBM logo
are registered trademarks of IBM. All other trademarks are the property of their respective owners.
John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE
NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR
COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL
WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT
THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER
PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR
THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR
THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY
PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE
THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Business
Development Department in the U.S. at 317-572-3205. For details on how to create a custom For
Dummies book for your business or organization, contact info@dummies.biz. For information
about licensing the For Dummies brand for products or services, contact
BrandedRights&Licenses@Wiley.com.

ISBN: 978-1-118-30506-5 (pbk)

ISBN: 978-1-118-30554-6 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

http://www.wiley.com
http://www.wiley.com/go/permissions

Table of Contents
Introduction .1

About This Book .. 1
Foolish Assumptions ... 1
Icons Used in This Book .. 2

Chapter 1: Getting the ABCs of Agile 3
Looking Back at Software Development Approaches 3

Code-and-Fix/Big Bang development 4
Waterfall .. 4
The Spiral model .. 5

Introducing the Agile Manifesto ... 7
The Manifesto... 7
The 12 principles that drive the Agile Manifesto 9

 Redefining Today’s Agile .. 10
Growing popularity.. 10
Growing scalability .. 10

Chapter 2: Understanding Agile Roles 11
Being a Stakeholder ... 11
Representing Stakeholders: The Product Owner 12
Being a Team Member ... 13
Assuming the Team Lead .. 13
Acting As the Architecture Owner ... 13
Stepping Up As an Agile Mentor .. 14
Looking at Agile Secondary Roles .. 14

Chapter 3: Getting Started with Agile 15
Agile Planning ... 15
Attending the Daily Coordination Meeting 16
Creating User Stories ... 16
Estimating Your Work ... 18
Tracking Velocity ... 19
Measuring Progress with Burndown Reports 20
Test-Driven Development ... 21
Continuous Integration and Deployment 22
Presenting Results at the Iteration Review 23
Collecting Feedback in the Iteration Review Meeting 23
Learning and Improving at the Iteration Retrospective...... 24

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition iv
Chapter 4: Choosing an Agile Approach 25

SCRUM: Organizing Construction .. 25
XP: Putting the Customer First ... 26
Lean Programming: Producing JIT .. 27
Kanban: Improving on Existing Systems 28
Agile Modeling .. 28
Unified Process (UP) ... 30

Chapter 5: Using Disciplined Agile Delivery (DAD) . . .31
Understanding the Attributes of DAD 31

People first.. 32
Learning-oriented .. 32
Agile ... 33
Hybrid ... 33
IT solution focused .. 34
Delivery focused .. 35
Goal driven ... 38
Risk and value driven .. 38
Enterprise aware .. 38

Understanding the DAD Life Cycle .. 39
Inception ... 40
Construction ... 40
Transition ... 40

Chapter 6: Scaling Agile Practices 41
Understanding What It Means to Scale 41

Large teams .. 42
Distributed teams .. 42
Compliance ... 42
Domain complexity .. 43
Organization distribution ... 43
Technical complexity .. 43
Organizational complexity ... 43
Enterprise discipline ... 44

Organizing Large Teams ... 44

Chapter 7: Evaluating Agile Tools 47
Considering Key Criteria for Selecting Agile Tools.............. 47
Exploring the Jazz Initiative .. 48
Using the Best Tool for the Job .. 49

Process awareness and customizability 49
Team awareness .. 50

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Table of Contents v
Planning .. 50
Transparency/project health 51
Broad Platform Support .. 52
Extending tooling beyond core agile development ... 52

Chapter 8: Making the Move to Agile: IBM’s Story 53
Setting Teams Up for Success .. 54

Training ... 54
Collaboration capabilities .. 54
Changing culture .. 54
Changing roles ... 55
Team structure .. 55

Updating Processes for Distributed Teams 56
Working with New Tools ... 57
Reaping the Benefits of Agile .. 58

Chapter 9: Ten Common Agile Adoption Pitfalls 59
Focusing Only on Construction.. 59
Becoming Agile Zombies ... 60
Improper Planning ... 60
Excluding the Entire Organization ... 60
Lack of Executive Support .. 61
Going Too Fast ... 61
Insufficient Coaching ... 61
Retaining Traditional Governance ... 62
Skimping on Training ... 62
Skimping on Tooling .. 62

Chapter 10: Ten Myths about Agile 63
Agile Is a Fad ... 63
Agile Isn’t Disciplined .. 63
Agile Means “We Don’t Plan” .. 64
Agile Means “No Documentation” .. 64
Agile Is Only Effective for Collocated Teams 64
Agile Doesn’t Scale ... 64
Agile Is Unsuitable for Regulated Environments 65
Agile Means We Don’t Know What Will Be Delivered.......... 65
Agile Won’t Work at My Company ... 65
It’s Enough for My Development Team to Be Agile 66
Agile Is a Silver Bullet .. 66

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Publisher’s Acknowledgments
We’re proud of this book and of the people who worked on it. For details on how to
create a custom For Dummies book for your business or organization, contact info@
dummies.biz. For details on licensing the For Dummies brand for products or
services, contact BrandedRights&Licenses@Wiley.com.
Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and Vertical
Websites

Project Editor: Carrie A. Burchfield
Development Editor:

Colleen Totz-Diamond
Editorial Manager: Rev Mengle
Senior Acquisitions Editor:

Katie Feltman
Business Development Representative:

Sue Blessing
Custom Publishing Project Specialist:

Michael Sullivan

Composition Services

Senior Project Coordinator: Kristie Rees
Layout and Graphics: Jennifer Creasey,

Lavonne Roberts, Christin Swinford
Proofreader: Jessica Kramer

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher
Andy Cummings, Vice President and Publisher
Mary Bednarek, Executive Director, Acquisitions
Mary C. Corder, Editorial Director

Publishing and Editorial for Consumer Dummies

Kathleen Nebenhaus, Vice President and Executive Publisher
Composition Services

Debbie Stailey, Director of Composition Services
Business Development

Lisa Coleman, Director, New Market and Brand Development

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

A
gile development principles have gone from something
used only by cutting-edge teams to a mainstream approach

used by teams large and small for things as varied as the following:

 ✓ Startup software development projects

 ✓ Enterprise-sized development efforts

 ✓ Complex, large-scale systems engineering initiatives
(such as the electronics in the cars you drive and the
airplanes you fly in)

 ✓ Legacy systems (which means systems that have been
around for a while, such as mainframe)

 ✓ Embedded, real-time systems (such as pacemakers or
life-support systems)

 ✓ High-compliance environments (such as healthcare,
insurance, or banking)

About This Book
Welcome to Agile For Dummies, IBM Limited Edition. You’ve
probably been hearing about agile for a long time, which isn’t
surprising. If you’re not using agile methods already though, or
if you’ve only been exposed to agile on small projects here and
there, you may wonder how to get started with it. Can agile ever
work in your environment? Relax. This book is here to help.

Foolish Assumptions
Many people and teams can benefit most from this book, but
we took the liberty to assume the following:

 ✓ You’re looking to pilot a project using agile. You’re a project
manager, a technical lead, or an aspiring product owner who
wants to adopt agile practices but isn’t sure where to start.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 2
 ✓ You may have tried out some agile practices in an ad hoc

manner, and you encountered some difficulties. Don’t
worry; many teams experience some missteps when first
moving to agile.

 ✓ You’ve had some project success, and you’re looking to
grow the agile practice beyond your team. You’re looking
for ways to coordinate multiple teams with the same
outcomes you experienced on your small team.

 ✓ You want to try agile, but your environment has
complexities that need to be addressed. Maybe you have
globally distributed teams or are subject to regulatory
compliance mandates. You’re wondering if agile practices
can be effective in this environment.

But, no matter who you are, this book helps explain and
reinforce the successful software development practices
available today. There’s great food for thought here, even
if your current team or organization isn’t ready to make the
agile leap just yet.

Icons Used in This Book
Sometimes, information deserves special attention. The icons
in this book identify such information for you. Here’s a brief
explanation for each icon so you’ll recognize them when they
turn up.

The Tip icon points to information that describes a special
benefit of working with agile.

This icon identifies pitfalls and problems to avoid in your
agile journey.

The Remember icon presents you with tidbits that you won’t
want to forget after you finish the book.

This icon points out content that gets a little deeper into the
weeds of agile development or explains agile jargon you may
encounter. The info isn’t crucial to your journey, so you can
skip it if you like.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 1

Getting the ABCs of Agile
In This Chapter
▶ Understanding where software development has been
▶ Dissecting the Agile Manifesto
▶ Defining agile today

I
f you’re reading this book, you’ve seen software being made.
Regardless of your role on the project, you know it’s not a

perfect process. You know it’s hard to do well. Software develop-
ment doesn’t face problems for lack of trying or for lack of brain
power. People in the software business tend to be some very
bright, hardworking people. They don’t plan to deliver software
over budget, past deadline, and with defects (or without features
people need). So what’s been at the root of all these issues?

Agile is an attempt to make the process of software development
better and more effective, and it’s seen increasing popularity
and success. In this chapter, you discover how agile is an
incremental, iterative approach to delivering high-quality
software with frequent deliveries to ensure value throughout
the process. It places a high value on individuals, collaboration,
and the ability to respond to change.

Looking Back at Software
Development Approaches

To understand how agile has been successful, take a moment
to look back at some of the software development approaches
that have gone before it. As software development has
evolved over the last 70-plus years, it has had several dominant
models or methodologies. Each had reasons for coming into
being, and really no model is used as is; models are almost

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 4
always tailored to suite their unique needs. Each model has
its benefits and drawbacks.

A model or methodology is just a fancy word for a process or
approach to creating software, usually with specific steps or
phases used to manage it. The common thinking is that it’s
better to have an approach in mind than to have none at all.

Agile itself is just a newer, best-of-breed collection of
methodologies used to develop and maintain software.

Code-and-Fix/Big Bang
development
The original approach to software development was Code-and-
Fix development, where you wrote some code and then fixed
things that were incorrect as you found them (or when others
found them for you). Software was delivered all at once, in
a “big bang” — hence the term, Big Bang — and software
developers waited to find out what they may have done
wrong, both in the form of outright errors and in the form of
not meeting user needs or expectations.

This approach is a challenging way to deliver software even
on the smallest, simplest scale. As the amount of code grew
and became more complicated, this method was obviously
too risky and expensive an approach to software development.
Something better was needed.

Waterfall
To overcome the problems with the Big Bang/Code-and-Fix
model (see the preceding section), software development
began to take on specific stages:

1. Requirements.

 2. Design.

 3. Development.

 4. Integration.

 5. Testing.

 6. Deployment.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 1: Getting the ABCs of Agile 5
This kind of sequential, stage-based approach became
popular in the mid-1950s. Not until 1970 did this model
become known as the Waterfall model — described as a
waterfall because after finishing any one phase and moving on
to the next, moving backward to make changes or corrections
was very difficult (water going the wrong way up a waterfall is
pretty hard).

Waterfall presented a step forward from Code-and-Fix and is
still used in many industries to this day. Despite wide adoption
and continued use, however, the model has problems:

 ✓ Schedule risk: Unless the system being designed is
already well understood, Waterfall has a higher-than-
normal risk of not meeting schedule. Business needs may
change during a long project, and developers may be
asked to squeeze in “one more thing,” which can have an
incremental impact on test and deployment teams. These
changes in scope add up — an effect known as scope
creep.

 ✓ Limited flexibility: The Waterfall model locks down
requirements very early in the process, producing little
wiggle room to add late discoveries or needed changes
throughout the process. This is why scope creep (see the
preceding bullet) is problematic with this model.

 In addition, with testing held until the end of the process,
defects in the form of code errors are discovered long
after the developers have written the code, making it not
only harder for the developer to find and fix but also can
potentially trigger the need for major design changes
toward the end of the project.

 ✓ Reduced customer involvement: Involvement with
customers in a Waterfall approach is limited and can
cause companies to miss the market need. Studies show
that customers either always or often use the capabilities
of a typical system only 20 percent of the time.

The Spiral model
By the mid-1980s, developers were experimenting with
alternatives to Waterfall (see the preceding section). Iterative
and incremental approaches became popular:

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 6
 ✓ An incremental approach regularly delivers working code

in small chunks.

 ✓ An iterative approach plans on learning from feedback on
the deliveries and sets aside time to use this feedback to
make improvements.

An incremental approach can be iterative because the small
chunks result in feedback; feedback leads to changes in the
chunks already delivered, and shapes future direction. This
process happens much more rapidly with incremental
delivery than waiting until the end of a long-release cycle.
Besides, if you wait until the end of a long-release cycle, the
users already have a long list of new features they need.

The Spiral model, introduced in 1988, was a landmark software
development methodology. It used prototyping and
incremental delivery process to manage project risk. It was
designed to be especially effective for systems that had a high
level of uncertainty around what exactly needed to be built.
These kinds of projects struggle in the Waterfall approach
(see the preceding section) because the detailed specifica-
tions created ahead of time ran aground in the project when
the problem space was better understood.

The Spiral model — both incremental and iterative — delivered
the final version of working software, and this archetype
followed something closer to the Waterfall model. But it got
its name because of the way the model conceptualized its
incremental deliveries and the iterative work following a
delivery.

In the 1990s, more lightweight approaches gained popularity in
an effort to come up with an effective alternative to Waterfall.
RAD, or Rapid Application Development, relied on building
prototypes to allow requirements to emerge and elicit
frequent feedback. The Scrum and XP (Extreme Programming)
methodologies took root, both placing a heavy focus on short
iterations to allow frequent delivery of software. In general, to
serve business needs and improve software project success
rates.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 1: Getting the ABCs of Agile 7

Introducing the Agile Manifesto
In February of 2001, a group of developers interested in
advancing lightweight development methodologies got
together to talk about their views and to find common ground,
and agile was born. The developers who created agile
understood the importance of creating a model in which each
iteration in the development cycle “learned” from the previous
iteration. The result was a methodology that was more
flexible, efficient, and team-oriented than any of the previous
models.

All the agile methods look to the Agile Manifesto and 12
core principles for guidance. The adherence to the guidance
provided by the manifesto and principles is what makes a
software development team agile, not a specific process, tool,
label.

The Manifesto
The Manifesto for Agile Software Development is a compact
68 words (now that’s lightweight!) that stresses four values.

Manifesto for Agile Software Development*

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

* Agile Manifesto Copyright 2001: Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn,
Ward Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern,
Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, Dave Thomas
This declaration may be freely copied in any form, but only in its entirety through this notice.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 8
No boxes with arrows, no swim-lane diagrams here. The Agile
Manifesto is straightforward, but don’t let the brevity fool
you. This is powerful stuff. The following sections break down
the components of the manifesto.

Individuals and interactions over processes and tools
Recognizing that software is made by people, not processes
or tools, agile places a higher premium on people working
together effectively. Processes and tools can aid in that but
can’t replace it.

Working software over comprehensive documentation
Valuing working software over comprehensive documentation
stands in stark opposition to the Waterfall model. A highly
detailed, accurate, and comprehensive specification docu-
ment is of no value if it doesn’t result in working software that
meets users’ needs. Working software may involve
documentation, but agile only uses it in service to creating
working software, not as an end (almost) unto itself.

Customer collaboration over contract negotiation
While agile isn’t ignoring the reality of contracts, it values active
collaboration throughout the software development process
as a better way to deliver value instead of a carefully worded
contract. A contract is no proxy for actual communication when
you’re doing something as challenging as creating software.

Responding to change over following a plan
Except for the most incredibly simple systems, it’s massively
difficult to think of every feature, every piece of data, and
every possible use case for software. That means, in a
collaborative process with the customer, a lot is discovered
during the process of developing software. Also, the world
changes pretty fast: Business needs and priorities can shift
in the months or even years it can take for a large system to
be fully built. Agile values the ability to change in response
to new discoveries and needs over sticking to a plan created
before everything was known.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 1: Getting the ABCs of Agile 9

The 12 principles that drive
the Agile Manifesto
The people who wrote the Agile Manifesto later assembled
12 principles that inform and reinforce the manifesto.
These further illuminate the things agile values in software
development.

The Agile Manifesto follows these principles:

 1. The highest priority is to satisfy the customer through
early and continuous delivery of valuable software.

 2. Welcome changing requirements, even late in
development. Agile processes harness change for the
customer’s competitive advantage.

 3. Deliver working software frequently, from a couple of
weeks to a couple of months, with a preference to the
shorter timescale.

 4. Business people and developers must work together
daily throughout the project.

 5. Build projects around motivated individuals. Give
them the environment and support they need, and
trust them to get the job done.

 6. The most efficient and effective method of conveying
information to and within a development team is
face-to-face conversation.

 7. Working software is the primary measure of progress.

 8. Agile processes promote sustainable development.
The sponsors, developers, and users should be able to
maintain a constant pace indefinitely.

 9. Continuous attention to technical excellence and good
design enhances agility.

 10. Simplicity — the art of maximizing the amount of work
not done — is essential.

 11. The best architectures, requirements, and designs
emerge from self-organizing teams.

 12. At regular intervals, the team reflects on how to
become more effective and then tunes and adjusts its
behavior accordingly.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 10
The Agile Manifesto and the principles behind it are published
at http://www.agilemanifesto.org.

 Redefining Today’s Agile
Since the time when the Agile Manifesto was drafted, agile
has grown in popularity, and its use has been extended to
increasingly larger organizations and more complex projects.

Growing popularity
Agile is a widely accepted and adopted approach to software
development. Hundreds of books on agile exist, covering
everything from how to manage agile development to how to
apply it in specific industries to how to apply it with specific
programming languages. You can attend agile training courses
and be an agile coach. Practitioners old and new are blogging
about their challenges, discoveries, and successes.

As businesses gain greater competitive advantage by being
able to move and change faster, agile approaches are being
used to develop many kinds of systems, including web-based
applications, mobile applications, business intelligence (BI)
systems, life-critical systems, and embedded software. Agile
approaches are adopted by varied organizations, including
financial companies, retailers, healthcare organizations,
manufacturers, and government agencies — including
defense.

Growing scalability
As the advantages of agile become clear and the number
of success stories grows, more and more teams have been
attempting to scale agile practices to ever larger and more
complex software development projects. Teams are finding
success with hybrid approaches that stay true to core agile
principles and extend them beyond the software development
stage to the entire software life cycle. Chapter 6 covers the
scaling of agile practices.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 2

Understanding Agile Roles
In This Chapter
▶ Discovering the primary roles on agile teams
▶ Taking a look at additional team positions

O
n a disciplined agile project, any given person can be in
one or more roles, and he can also change his role(s)

over time. Roles aren’t positions, nor are they meant to be.
Teams practicing agile adapt to styles that suit their needs
and may vary in their exact execution. However, all tend to
have the same kinds of roles and very similar processes at
their core. Agile deemphasizes specialized roles and consid-
ers all team members equal — everyone works to deliver a
solution regardless of their job. With the exception of stake-
holder, everyone’s effectively in the role of team member. In
this chapter, you explore the roles, arming you with a basis
for understanding any style you may experience.

Being a Stakeholder
A stakeholder is someone who’s financially impacted by the
outcome of the solution and is clearly more than an end-user.
A stakeholder may be one of the following:

 ✓ A direct or indirect user

 ✓ A manager of users

 ✓ A senior manager

 ✓ An operations or IT staff member

 ✓ The “gold owner” who funds the project

 ✓ An auditor(s)

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 12
 ✓ Your program/portfolio manager

 ✓ A developer(s) working on other systems that integrate
or interact with the one under development

 ✓ A maintenance professional(s) potentially affected by the
development and/or deployment of a software project

Representing Stakeholders:
The Product Owner

The product owner is the team member who speaks as the
“one voice of the customer.” This person represents the
needs and desires of the stakeholder community to the agile
delivery team. He clarifies any details regarding the solution
and is also responsible for maintaining a prioritized list of
work items that the team will implement to deliver the solution.
While the product owner may not be able to answer all
questions, it’s his responsibility to track down the answer in a
timely manner so the team can stay focused on its tasks. Each
agile team, or subteam in the case of large projects organized
into a team of teams, has a single product owner.

The product owner has the following additional roles:

 ✓ Communicates the project status and represents the
work of the agile team to key stakeholders

 ✓ Develops strategy and direction for the project and sets
long- and short-term goals

 ✓ Understands and conveys the customers’ and other
business stakeholders’ needs to the development team

 ✓ Gathers, prioritizes, and manages product requirements

 ✓ Directs the product’s budget and profitability

 ✓ Chooses the release date for completed functionality

 ✓ Answers questions and makes decisions with the
development team

 ✓ Accepts or rejects completed work during the sprint

 ✓ Presents the team’s accomplishments at the end of each
sprint

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 2: Understanding Agile Roles 13

Being a Team Member
The role of team member focuses on producing the actual
solution for stakeholders. Team members perform testing,
analysis, architecture, design, programming, planning,
estimation, and many more activities as appropriate throughout
the project.

Not every team member has every single skill (at least not
yet), but they have a subset of them and strive to gain more
skills over time. Team members identify, estimate, sign-up for,
and perform tasks and track their completion status.

Assuming the Team Lead
The team lead guides the team in performing management
activities instead of taking on these responsibilities herself.
She’s a servant-leader to the team, upholding the conditions
that allow the team’s success. This person is also an agile
coach who helps keep the team focused on delivering work
items and fulfilling its iteration goals and commitments to
the product owner. The team lead facilitates communication,
empowers the team to self-optimize its processes, ensures
that the team has the resources it needs, and manages issue
resolution in a timely manner.

While an experienced team lead brings skills to a new team,
this person can’t be a true coach without mentoring. So for
teams new to agile, you may have a part-time experienced
coach working with the team for a few iterations.

Acting As the Architecture
Owner

Architecture is a key source of project risk, and someone has
to be responsible for ensuring the team mitigates this risk.
The architecture owner is the person who owns the architecture
decisions for the team and who facilitates the creation and
evolution of the overall solution design.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 14

You may not have to formally designate a team member as an
architecture owner on small teams, because the person in the
role of team lead often is the architecture owner, too.

Stepping Up As an Agile Mentor
A mentor is a great idea for any area in which you want to
develop new expertise. The agile mentor, sometimes called an
agile coach, implements agile projects and shares that experi-
ence with a project team. He provides valuable feedback and
advice to new project teams and to project teams that want to
perform at a higher level. On an agile project, the agile mentor is

 ✓ A coach only and isn’t part of the team

 ✓ Often from outside the organization and objective in
guidance without personal or political considerations

 ✓ Experienced in implementing agile techniques and
running agile projects in different situations

Looking at Agile Secondary Roles
Your project may include the need to add some or all the
following roles:

 ✓ Domain expert: Someone with deep business/domain
knowledge beyond that of the product owner.

 ✓ Specialist: Although most agile team members are
generalizing specialists, sometimes, particularly at scale,
specialists such as business analysts or even project/
program managers are required.

 ✓ Technical expert: Technical experts are brought in as
needed to help the team overcome a difficult problem and to
transfer their skills to one or more developers on the team.

 ✓ Independent tester: Some agile teams are supported
by an independent test team working in parallel that
validates work throughout the life cycle.

 ✓ Integrator: For complex environments, your team may
require one or more people in the role of integrator
responsible for building the entire system from its various
subsystems.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 3

Getting Started with Agile
In This Chapter
▶ Looking at agile planning practices
▶ Managing and tracking your progress
▶ Reflecting for future improvement

I
n this chapter, you explore how the agile team organizes
the software development process. Everything the

stakeholders want in their software is broken down into
small chunks, ranked, worked on in priority order over
short iterations (typically one to four weeks), reviewed for
approval, and delivered to production. This process repeats
until the prioritized list is finished, called a release. An agile
team expects re-prioritization, additions to the list, and
subtractions from the list throughout the process but
embraces them as a means to deliver the most value and the
best possible solution.

Agile Planning
Teams following agile software development methods typi-
cally divide their release schedule into a series of fixed-length
development iterations of two to four weeks — shorter is
generally better than longer. Planning involves scheduling the
work to be done during an iteration or release and assigning
individual work items to members of the team.

To be effective and to reflect the team’s position and direction,
plans need to be accessible to everyone on the team and
to change dynamically over the course of the iteration.
Automated planning tools are available to facilitate this
process, or you can have at it the old-fashioned way with
whiteboards, index cards, or sticky notes.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 16

During an agile project, planning occurs at three levels:

 ✓ Release planning: Release plans contain a release
schedule for a specific set of features. The product owner
creates a release plan at the start of each release.

 ✓ Iteration planning: Team members gather at the beginning
of the iteration (referred to as a sprint in the Scrum
methodology) to identify the work to be done during
that iteration. This is referred to as self-organization.

 ✓ Daily planning: Development teams begin each day with
standup meetings to plan the day. These meetings are
generally 5 to 15 minutes long.

Attending the Daily Coordination
Meeting

On agile projects, you make plans throughout the entire
project daily. Agile development teams start each workday
with a 15-minute (or less) daily coordination meeting to note
completed items, to identify impediments, or roadblocks,
requiring team lead involvement, and to plan their day.

In the daily coordination meeting, often called a daily standup
meeting, each development team member makes the following
three statements:

 ✓ Yesterday, I completed [state items completed].

 ✓ Today, I’m going to take on [state task].

 ✓ My impediments are [state impediments, if any].

Daily coordination meetings can actually be quite fun when
using the right tools. For example, the Taskboard view in
Rational Team Concert (RTC) is a capability that arranges all
work items as cards on a board with multiple columns. For
more info on the Taskboard view, see Chapter 8.

Creating User Stories
When stakeholders realize the need for a new software
system, feature set, or application, the agile process begins

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 3: Getting Started with Agile 17
with the product owner defining what the software will do and
what services it provides to its users. Instead of following the
more traditional process of product managers and business
analysts writing lengthy requirements or specifications, agile
takes a lightweight approach of writing down brief descriptions
of the pieces and parts that are needed. These become work
items and are captured in the form of user stories. A user story
is a simple description of a product requirement in terms of
what that requirement must accomplish for whom. Your user
story needs to have, at a minimum, the following parts:

 ✓ Title: <a name for the user story>

 ✓ As a <user or persona>

 ✓ I want to <take this action>

 ✓ So that <I get this benefit>

The story should also include validation steps — steps to take
to know that the working requirement for the user story is
correct. That step is worded as follows:

 ✓ When I <take this action>, this happens <description of
action>

User stories may also include the following:

 ✓ An ID: A number to differentiate this user story from
other user stories.

 ✓ The value and effort estimate: Value is how beneficial a
user story is to the organization creating that product.
Effort is the ease or difficulty in creating that user story.

 ✓ The person who created the user story: Anyone on the
project team can create a user story.

 For user stories that are too large to be completed in a
single iteration or sprint, some teams use Epics. Epics are
basically a higher-level story that’s fulfilled by a group of
related user stories.

Figure 3-1 shows a typical user story card, back and front.
The front has the main description of the user story. The back
shows how you confirm that the requirement works correctly
after the development team has created the requirement.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 18

Title
As
I want to
so that

 Transfer money between accounts

Carol,

 review fund levels in my accounts
 and transfer funds between accounts
 I can complete the transfer and see the
 new balances in the relevant accounts.

Value Author
Jennifer

Estimate

Title
As
I want to
so that

 <personal/user>

 <action>

 <bene�t>

Value Author Estimate

Figure 3-1: Card-based user story example.

The product owner gathers and manages the user stories.
However, the development team and other stakeholders also
will be involved in creating and decomposing user stories.

User stories aren’t the only way to describe product
requirements. You could simply make a list of requirements
without any given structure. However, because user stories
include a lot of useful information in a simple, compact
format, they tend to be very effective at conveying exactly
what a requirement needs to do.

Estimating Your Work
When the product owner sets the scope of an iteration, she
needs to know that the scope is the right size — that there
isn’t too much work to get done in the iteration. Like any
other developers, agile team members estimate their work.
Unlike other developers, agile team members estimate in
something called points. Points represent a size-based,
complexity-based approach to estimation. Points are assigned
in whole numbers (1, 2, 3, and so on with no fractions or
decimals) and represent relative sizes and complexity of work
items. Small and simple tasks are one point tasks, slightly
larger/more complex tasks are two point tasks, and so on.

Points are kind of like t-shirt sizes. There are small, medium,
large, extra large, and potentially other sizes (extra small and
extra extra-large). These sizes are relative — no regulation
dictates how much larger medium is compared to small. Sizes
vary a bit from manufacturer to manufacturer. T-shirt sizing
succeeds not because of high precision — it’s pretty imprecise,
actually — but through its general accuracy.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 3: Getting Started with Agile 19

In practice, one team’s three-point size estimate for a work
item may correlate to another team’s two-point estimate for
an identical work item. Teams need only agree on what size
and complexity corresponds to what point count and remain
internally consistent in their use.

You may be tempted to equate points to hours. Don’t do it!
An agile team gains consistency by using point values that
don’t vary based on the ability of the person doing the work.
A five-point story has the same size and complexity on a
given team regardless of who does the work. The team still
accommodates faster and slower team members in the
number of points assigned in a single iteration, but the value
delivered to the product owner and stakeholders (measured
by size and complexity) remains consistent. If you want to
track effort and hours, keep it separate from points.

Tracking Velocity
At the end of each iteration, the agile team looks at the
requirements it has finished and adds up the number of story
points associated with those requirements. The total number
of completed story points is the team’s velocity, or work

Planning Poker
As you refine your requirements, you
need to refine your estimates as well.
Planning Poker is a technique to
determine user story size and to build
consensus with the development
team members. Planning poker
is a popular and straightforward
approach to estimating story size.

To play planning poker, you need a
deck of cards with point values on
them. There are free online planning
poker tools and mobile apps, or you

can make your own with index cards
and markers. The numbers on the
cards are usually from the Fibonacci
sequence.

Only the development team plays
estimation poker. The team lead and
product owner don’t get a deck and
don’t provide estimates. However,
the team lead can act as a facilitator,
and the product owner reads the
user stories and provides details on
user stories as needed.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 20
output, for that iteration. After the first few iterations, you’ll
start to see a trend and will be able to calculate the average
velocity.

The average velocity is the total number of story points
completed, divided by the total number of iterations completed.
For example, if the development team’s velocity was . . .

Iteration 1 = 15 points

Iteration 2 = 19 points

Iteration 3 = 21 points

Iteration 4 = 25 points

. . . your total number of story points completed is 80. Your
average velocity is 20 to 80 story points divided by four
iterations. After you’ve run an iteration and know the team’s
velocity, you can start forecasting the remaining time on your
project.

Measuring Progress with
Burndown Reports

Burndown reports track the number of points completed and
are used for monitoring single iterations, releases, and the
entire project backlog. They get their name from the concept
that the iteration or project backlog gets “burned down,”
completed, and cleared away. Burndown reports show progress,
reflecting both the value delivered (in points) and the team’s
velocity. See Figure 3-2 for a simple project burndown report,
with iterations along the X-axis and the points in the entire
product backlog on the Y-axis.

You may also find that you need to re-estimate the backlog.
As the team progresses through a project, it discovers more
about that project, its technology, and the business concerns
the project addresses. Greater understanding leads to better
estimates, so the points associated with some work items in
the backlog can become more accurate over time.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 3: Getting Started with Agile 21
Project Burndown

Iteration

Points

1 2 3 4 5 6 7 8 9 10

Ba
ck

lo
g

Po
in

ts
400
350
300
250
200
150
100

50
0

Figure 3-2: A project burndown report.

Test-Driven Development
Testing occurs throughout the agile life cycle. While an
independent tester may or may not be a member of the cross-
functional team, developers are expected to test their code.
Some of you are saying, “Hold on, developers can’t test their
own work. They don’t want to. They’re not good at it!” But
trust me; it’s not as bad as you think. In fact, it’s not bad at all.

Agile teams use two common practices to handle their testing:

 ✓ Test-Driven Development (TDD)

 ✓ Automated unit tests

When used together, they’re a powerful force.

Performing TDD means that before the developer writes a
piece of code, she first writes a small test that validates the
code she’s about to write. She runs the test to make sure it
fails and then writes the code that makes the test pass. This
may seem odd, but with practice it’s much more efficient than

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 22
writing a lot of code, running it, and going back later to figure
out everywhere it’s broken (a process known as debugging).
This process puts the developer in a testing mindset while
writing code, which leads to higher-quality code.

When a developer executes a small test against code she’s
written, it’s called a unit test. When these tests are run in
batches all at once (automated), they become very powerful.
Agile teams write a lot of unit tests, automate them, and run
them frequently against the code they write as individuals
and against their combined code that makes up the entire
application. Running automated unit tests frequently against
the code reveals problems quickly so they can be addressed
quickly. This approach finds defects long before they’d ever
reach a traditional test cycle, which means higher-quality
applications.

Continuous Integration
and Deployment

Continuous integration (CI) is the practice of regularly
integrating and testing your solution to incorporate changes
made to its definition. Changes include updating the source
code, changing a database schema, or updating a configuration
file. Ideally, when one or more changes are checked into your
configuration management system, the solution should be
rebuilt (recompiled), retested, and any code or schema
analysis performed on it. Failing that, you should strive to do
so at least once if not several times a day.

Continuous deployment (CD) enhances CI by automatically
deploying successful builds. For example, when the build is
successful on a developer’s workstation, she may automatically
deploy her changes to the project integration environment,
which would invoke the CI system there. A successful
integration in that environment could trigger an automatic
deployment into another environment and so on.

On a developer’s workstation, the integration job could run
at specific times, perhaps once an hour, or better every time
that she checks in something that is part of the build. This
whole process of continuously integrating a developer’s code
with the rest of a team’s code in and then running automated

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 3: Getting Started with Agile 23
test regressions in an integration environment is a critical
part of agile done right. CI ensures high-quality working
software at all times, and CD ensures that the software is
running in the right place.

Presenting Results at
the Iteration Review

The iteration review, or sprint review in Scrum, is a meeting to
review and demonstrate the user stories that the development
team completed during the iteration. The iteration review is
open to anyone interested in reviewing the iteration’s
accomplishments. This means that all stakeholders get a
chance to see progress on the product and provide feedback.

Preparation for the iteration review meeting should not take
more than a few minutes. Even though the iteration review
might sound formal, the essence of showcasing in agile is
informality. The meeting needs to be prepared and organized,
but that doesn’t require a lot of flashy materials. Instead,
the iteration review focuses on demonstrating what the
development team has done.

Collecting Feedback in the
Iteration Review Meeting

Gather iteration review feedback informally. The product
owner or team lead can take notes on behalf of the development
team, as team members often are engaged in the presentation
and resulting conversation. New user stories may come out of
the iteration review. The new user stories can be new features
altogether or changes to the existing code.

In the first couple of iteration reviews, the team lead may
need to remind stakeholders about agile practices. Some
people hear the word demonstration and immediately expect
fancy slides and printouts. The team lead has a responsibility
to manage these expectations and uphold agile values and
practices.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 24
The product owner needs to add any new user stories to
the product backlog and rank those stories by priority. The
product owner also adds stories that were scheduled for the
current iteration, but not completed, back into the product
backlog, and ranks those stories again based on the most
recent priorities. The product owner needs to complete
updates to the product backlog in time for the next iteration
planning meeting.

Learning and Improving at
the Iteration Retrospective

After the iteration review is over (see the preceding section),
the iteration retrospective begins. The iteration retrospective
is a meeting where the team lead, the product owner, and the
development team discuss how the iteration went and what
they can do to improve the next iteration. If the team wants
to, other stakeholders can attend as well. If the team regularly
interacts with outside stakeholders, and it should, then those
stakeholders’ insights can be valuable.

You may want to take a break between the iteration review
and the iteration retrospective. The team needs to come into
the retrospective ready to inspect its processes and present
ideas for adaptation.

The goal of the iteration retrospective is to continuously
improve your processes. Improving and customizing processes
according to the needs of each individual team increases team
morale, improves efficiency, and increases velocity — work
output.

Agile approaches quickly reveal problems within projects.
Data from the iteration backlog shows exactly where the
development team has been slowed down, so the product
owner should revisit the backlog to prepare for the next
iteration. Have priorities shifted? Have important new issues
appeared? The product owner has to actively manage the
backlog in preparation for the next iteration.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 4

Choosing an Agile
Approach

In This Chapter
▶ Understanding various agile approaches
▶ Looking at the strengths and weakness of each approach

Y
ou can use several agile methods as a base to tailor a
strategy to meet the unique needs of your situation. This

chapter discusses these varied approaches.

Scrum: Organizing Construction
Scrum is the most popular approach to agile software
development. With this approach, any adjustments the
development team makes to any aspect of the project is based
on experience, not theory. Scrum provides four deliverables:

 ✓ Product backlog: The full list of requirements that define
the product

 ✓ Sprint backlog: The list of requirements and associated
tasks in a given sprint (Scrum calls iterations sprints)

 ✓ Burndown charts: Visual representations of the progress
within a sprint and within the project as a whole.

 ✓ Shippable functionality: The usable product that meets
the customer’s business goals

Five practices, covered in detail in Chapter 3, are key to Scrum.
They are release planning, sprint planning, the daily scrum
meeting, the sprint review meeting, and the sprint retrospective.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 26

XP: Putting the Customer First
A popular approach to product development, specific to
software, is Extreme Programming (XP). The focus of XP is
customer satisfaction. XP teams achieve high customer
satisfaction by developing features when the customer needs
them. New requests are part of the development team’s daily
routine, and the team must deal with requests whenever they
crop up. The team organizes itself around any problem that
arises and solves it as efficiently as possible. The following
are XP practices:

 ✓ Coding standard: Team members should follow
established coding guidelines and standards.

 ✓ Collective ownership: Team members may view and
edit other team members’ code or any other project
artifact. Collective ownership encourages transparency
and accountability for work quality.

 ✓ Continuous integration: Team members should check in
changes to their code frequently, integrating the system
to ensure that their changes work, so the rest of the team
is always working with the latest version of the system.

 ✓ Test-Driven Development (TDD): In TDD the first step is
to quickly code a new test — basically just enough code
for the test to fail. This test could either be high-level
acceptance or a more detailed developer test. You then
update your functional code to make it pass the new test,
get your software running, and then iterate.

 ✓ Customer tests: Detailed requirements are captured
just-in-time (JIT) in the form of acceptance tests (also
called story tests).

 ✓ Refactoring: Refactoring is a small change to something,
such as source code, your database schema, or user
interface, to improve its design and make it easier to
understand and modify. The act of refactoring enables
you to evolve your work slowly over time.

 ✓ Pair programming: In this practice, two programmers
work together on the same artifact at the same time. One
programmer types the code while the other programmer
looks at the bigger picture and provides real-time code
review.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 4: Choosing an Agile Approach 27
 ✓ Planning game: The purpose of the planning game is to

guide the product into successful delivery. This includes
high-level release planning to think through and monitor
the big issues throughout the project as well as detailed
JIT iteration/sprint planning.

 ✓ Simple design: Programmers should seek the simplest
way to write their code while still implementing the
appropriate functionality.

 ✓ Small releases: Frequent deployment of valuable, working
software into production is encouraged. Frequent
deployments build confidence in the team and trust from
the customer.

 ✓ Sustainable pace: The team should be able to sustain an
energized approach to work at a constant and gradually
improving velocity.

 ✓ Whole team: Team members should collectively have all
the skills required to deliver the solution. Stakeholders
or their representatives should be available to answer
questions and make decisions in a timely manner.

Lean Programming: Producing JIT
Lean has its origins in manufacturing. In the 1940s in Japan, a
small company called Toyota wanted to produce cars for the
Japanese market but couldn’t afford the huge investment that
mass production requires. The company studied supermarkets,
noting how consumers buy just what they need, because
they know there will always be a supply, and how the stores
restock shelves only as they empty. From this observation,
Toyota created a JIT process that it could translate to the
factory floor.

The result was a significant reduction in inventory of parts
and finished goods and a lower investment in the machines,
people, and space. The JIT process gives workers the ability
to make decisions about what is most important to do next.
The workers take responsibility for the results. Toyota’s success
with JIT processes has helped change mass manufacturing
approaches globally.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 28
The seven principles of lean manufacturing can be applied
to optimize the whole IT value stream. The lean software
development principles are eliminate waste, build in quality,
create knowledge, defer commitment, deliver quickly, respect
people, and optimize the whole.

Kanban: Improving on
Existing Systems

The Kanban method is a lean methodology, describing
techniques for improving your approach to software
development. Two Kanban principles critical to success are

 ✓ Visualizing workflow: Teams use a Kanban board (often
a whiteboard, corkboard, or electronic board) that
displays kanbans (indications of where in the process a
piece of work is). The board is organized into columns,
each one representing a stage in the process, a work
buffer, or queue; and optional rows, indicating the
allocation of capacity to classes of service. The board is
updated by team members as work proceeds, and
blocking issues are identified during daily meetings.

 ✓ Limit work in progress (WIP): Limiting WIP reduces
average lead time, improving the quality of the work
produced and increasing overall productivity of your
team. Reducing lead time also increases your ability to
deliver frequent functionality, which helps build trust
with your stakeholders. To limit WIP, understand where
your blocking issues are, address them quickly, and
reduce queue and buffer sizes wherever you can.

Agile Modeling
Agile Modeling (AM) is a collection of values, principles, and
practices for modeling software that can be applied on a
software development project in an effective and lightweight
manner. AM was purposely designed to be a source of strategies
that can be tailored into other base processes.

With an Agile Model Driven Development (AMDD) approach,
you typically do just enough high-level modeling at the

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 4: Choosing an Agile Approach 29
beginning of a project to understand the scope and potential
architecture of the system. During construction iterations you
do modeling as part of your iteration planning activities and
then take a JIT model storming approach where you model
for several minutes as a precursor to several hours of coding.
AMDD recommends that practitioners take a test-driven
approach to development although doesn’t insist on it.

The Agile Modeling practices include the following:

 ✓ Active stakeholder participation: Stakeholders (or their
representatives) provide info, make decisions, and are
actively involved in the development process.

 ✓ Architecture envisioning: This practice involves
high-level architectural modeling to identify a viable
technical strategy for your solution.

 ✓ Document continuously: Write documentation for your
deliverables throughout the life cycle in parallel to the
creation of the rest of the solution. Some teams choose
to write the documentation one iteration behind to focus
on capturing stable information.

 ✓ Document late: Write deliverable documentation as late
as possible to avoid speculative ideas likely to change in
favor of stable information.

 ✓ Executable specifications: Specify detailed requirements in
the form of executable customer tests and your detailed
design as executable developer tests.

 ✓ Iteration modeling: Iteration modeling helps identify
what needs to be built and how.

 ✓ Just barely good enough artifacts: A model needs to be
sufficient for the situation at hand and no more.

 ✓ Look-ahead modeling: Invest time modeling requirements
you intend to implement in upcoming iterations.
Requirements near the top of your work item list are
fairly complex so explore them before they’re popped off
the top to reduce overall project risk.

 ✓ Model storming: Do JIT modeling to explore the details
behind a requirement or to think through a design issue.

 ✓ Multiple models: An effective developer has a range of
models in his toolkit, enabling him to apply the right
model for the situation at hand.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 30
 ✓ Prioritized requirements: Implement requirements in

priority order, as defined by your stakeholders.

 ✓ Requirements envisioning: Invest your time at the start
of an agile project to identify the scope of the project and
create the initial prioritized stack of requirements.

 ✓ Single-source information: Capture info in one place
only.

 ✓ TDD: Quickly code a new test and update your functional
code to make it pass the new test.

Unified Process (UP)
The Unified Process (UP) uses iterative and incremental
approaches within a set life cycle. UP focuses on the
collaborative nature of software development and works with
tools in a low-ceremony way. It can be extended to address
a broad variety of project types, including OpenUP, Agile
Unified Process (AUP), and Rational Unified Process (RUP).

UP divides the project into iterations focused on delivering
incremental value to stakeholders in a predictable manner.
The iteration plan defines what should be delivered within
the iteration, and the result is ready for iteration review or
shipping. UP teams like to self-organize around how to
accomplish iteration objectives and commit to delivering the
results. They do that by defining and “pulling” fine-grained
tasks from a work items list. UP applies an iteration life cycle
that structures how micro-increments are applied to deliver
stable, cohesive builds of the system that incrementally
progress toward the iteration objectives.

UP structures the project life cycle into four phases:
Inception, Elaboration, Construction, and Transition. The
project life cycle provides stakeholders and team members
with visibility and decision points throughout the project.
This enables effective oversight and allows you to make “go or
no-go” decisions at appropriate times. A project plan defines
the life cycle, and the end result is a released application.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 5

Using Disciplined Agile
Delivery (DAD)

In This Chapter
▶ Listing the characteristics of DAD
▶ Getting to know the DAD life cycle

D
isciplined Agile Delivery (DAD) is a process framework
that encompasses the entire solution life cycle, acting like

an umbrella over best practices from many agile approaches
(for the varied approaches, flip back to Chapter 4). DAD sees
the solution through initiation of the project through construc-
tion to the point of releasing the solution into production.

When you adopt agile, you’re likely to encounter a few speed
bumps along the way, so it’s important to collaborate with other
agile practitioners to get ideas on what methods to start with,
how to grow your practice, and what common pitfalls to avoid
(see Chapter 9). To get started, join an online agile community,
such as the Agile Transformation Zone. Visit http://ibm.co/
getagile.

At this point, DAD works splendidly to help you avoid
the pitfalls, all while providing a comprehensive life cycle
management solution.

Understanding the
Attributes of DAD

The DAD process framework has several important
characteristics that are detailed in this section.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 32

People first
With DAD, people, and the way they work together, are the
first order of business. In an agile environment, the boundaries
between disciplines are torn down and handoffs are minimized
in the interest of working as a team instead of a group of
specialized individuals. But in DAD, cross-functional teams
are made up of cross-functional people. You don’t have
hierarchy within the team, and team members are encouraged
to be cross-functional in their skill sets and perform work
related to disciplines other than their specialty. Because team
members gain understanding beyond their primary discipline,
resources are used more effectively, and formal documentation
and sign-offs, by and large, aren’t necessary.

When you adopt an agile approach, people are pushed outside
their comfort zone. Taking on work outside of their established
skill sets may not be something they’re accustomed to doing.
They also may be reluctant to give up the work where they
feel they have the most expertise, for fear of losing relevance.
By eliminating hierarchy and providing roles that incorporate
cross-functional skill sets, DAD paves the way for this transition
to go a little more smoothly.

The five primary roles of DAD include the following:

 ✓ Stakeholder

 ✓ Product owner

 ✓ Team member

 ✓ Team lead

 ✓ Architecture owner

For details on each of these roles, check out Chapter 2.

Learning-oriented
Organizations working with traditional approaches to life cycle
management often don’t get the most out of every opportunity
for their staff to learn about the way effective solutions are
produced, yet the most effective organizations are the ones
that promote a learning-oriented environment for their staff.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 5: Using Disciplined Agile Delivery (DAD) 33
An important aspect of DAD is the iteration retrospective
meetings (covered in Chapter 3). These meetings occur
throughout the solution life cycle. In this way, team members
can make corrections to their processes as they go, leading to
a more efficient and effective outcome and learning from their
own mistakes to make each sprint better.

Agile
The DAD process framework adheres to and enhances the
values and principles of the Agile Manifesto (described in
Chapter 1).Teams following either iterative or agile processes
have been shown to

 ✓ Produce higher quality: High quality is achieved through
techniques such as continuous integration (CI), developer
regression testing, test-first development, and refactoring.

 ✓ Provide greater return on investment (ROI): Improved
ROI comes from focusing more on high-value activities,
working in priority order, automating as much of the IT
drudgery as possible, self-organizing, close collaborating,
and working smarter, not harder.

 ✓ Provide greater stakeholder satisfaction: Greater
stakeholder satisfaction is achieved by enabling active
stakeholder participation, incrementally delivering a
potentially consumable solution with each iteration,
and enabling stakeholders to evolve their requirements
throughout the project.

 ✓ Deliver quicker: Quicker delivery as compared to either
a traditional/waterfall approach or an ad-hoc (no defined
process) approach.

Hybrid
The DAD process framework is a hybrid: It adopts and tailors
strategies from a variety of sources. A common pattern within
organizations is that they adopt the Scrum process frame-
work and then do significant work to tailor ideas from other
sources to flesh it out. This sounds like a great strategy, and
it certainly is if you’re a consultant specializing in agile adop-
tion, until you notice that organizations tend to tailor Scrum
in the same sort of way.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 34
DAD is a more robust process framework that has already
done this common work. The DAD process framework adopts
strategies from the following methods:

 ✓ Scrum: DAD adopts and tailors many ideas from Scrum,
such as completing a stack of work items in priority order,
having a product owner responsible for representing
stakeholders, and producing a potentially consumable
solution from each iteration. See Chapter 4 for more
background information on Scrum.

 ✓ Extreme programming (XP): XP is an important source
of development practices for DAD, including but not
limited to continuous integration (CI), refactoring,
test-driven development (TDD), collective ownership,
and many more. See Chapter 4 for more info on XP.

 ✓ Agile Modeling (AM): DAD models its documentation
practices after requirements envisioning, architecture
envisioning, iteration modeling, continuous documentation,
and just-in-time (JIT) model storming. See Chapter 4 for
more info about AM.

 ✓ Unified Process (UP): DAD adopts several governance
strategies from UP. In particular, this includes strategies
such as having lightweight milestones and explicit
phases and focusing on the importance of proving out
the architecture in the early iterations and reducing all
types of risk early in the life cycle. Read more about UP
in Chapter 4.

 ✓ Agile Data (AD): DAD adopts several agile database
practices from AD such as database refactoring, database
test-in, and agile data modeling. It is also an important
source of agile enterprise strategies, such as how agile
teams can work effectively with enterprise architects and
enterprise data administrators.

 ✓ Kanban: DAD adopts two critical concepts — limiting
work in progress and visualizing work — from Kanban.
Read more about Kanban in Chapter 4.

IT solution focused
Much of the focus within the agile community is on software
development. DAD teams realize that in addition to software
they must also address hardware, documentation, business

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 5: Using Disciplined Agile Delivery (DAD) 35
process, and even organizational structure issues pertaining
to their overall solution.

The DAD process frameworks promotes activities that
explicitly address user experience (UX), database, business
process, and documentation issues (to name a few) to help
project teams think beyond software development alone.

Delivery focused
DAD addresses the entire life cycle from the point of initiating
the project through construction to the point of releasing the
solution into production. The project is carved into phases
with lightweight milestones to ensure that the project is
focused on the right things at the right time, such as initial
visioning, architectural modeling, risk management, and
deployment planning.

This differs from methods such as Scrum and XP, which focus
on the construction aspects of the life cycle. Details about how
to perform initiation and release activities, or even how they fit
into the overall life cycle, are typically vague and left up to you.

The life cycle of a DAD project is shown in Figure 5-1.This life
cycle has three critical features:

 ✓ A delivery life cycle: The DAD life cycle extends the Scrum
construction life cycle to explicitly show the full delivery life
cycle from the beginning of a project to the release of the
solution into production (or the marketplace).

 ✓ Explicit phases: The DAD life cycle is organized into
three distinct phases. See the section “Understanding the
DAD Life Cycle” for more information on these phases.

 ✓ Context: The DAD life cycle indicates that pre-project
activities as well as post-project activities occur.

See Figure 5-2 for the advanced DAD life cycle based on Kanban.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 36

Da
ily

W
or

k
Da

ily
 C

oo
rd

in
at

io
n

M
ee

tin
g

Ite
ra

tio
n

re
vie

w
 &

re
tro

sp
ec

tiv
e:

 D
em

o
to

st
ak

eh
ol

de
rs

,
de

te
rm

in
e

st
ra

te
gy

 fo
r

ne
xt

 it
er

at
io

n,
 a

nd
le

ar
n

fro
m

 yo
ur

ex

pe
rie

nc
es

In
iti

al
Ar

ch
ite

ct
ur

al
Vi

sio
n

Hi
gh

es
t P

rio
rit

y
W

or
k I

te
m

s
Id

en
tif

y,
pr

io
rit

ize
,

an
d

se
le

ct
pr

oj
ec

ts

In
iti

al
 vi

sio
n

an
d

fu
nd

in
g

In
iti

al
m

od
el

in
g,

pl
an

ni
ng

, a
nd

or
ga

ni
za

tio
n

In
iti

al
Re

qu
ire

m
en

ts
an

d
Re

le
as

e
Pl

an

W
or

kin
g

Sy
st

em
W

or
kin

g
So

lu
tio

n

En
ha

nc
em

en
t R

eq
ue

st
s

an
d

De
fe

ct
 R

ep
or

ts

Re
le

as
e

so
lu

tio
n

in
to

pr
od

uc
tio

n

Op
er

at
e

an
d

su
pp

or
t s

ol
ut

io
n

in
 p

ro
du

ct
io

n
Ite

ra
tio

n
Ba

ck
lo

g
Ta

sk
s

W
or

k
Ite

m
s

On
e

or
 m

or
e

sh
or

t i
te

ra
tio

ns
In

ce
pt

io
n

St
ak

eh
ol

de
r c

on
se

ns
us

Pr
ov

en
 a

rc
hi

te
ct

ur
e

Fu
nd

in
g

Fe
ed

ba
ck

Co
ns

tru
ct

io
n

Su
f�

ci
en

t f
un

ct
io

na
lit

y

Tr
an

sit
io

n
On

e
or

 m
or

e
sh

or
t i

te
ra

tio
ns

Pr
od

uc
tio

n
re

ad
y

De
lig

ht
ed

 st
ak

eh
ol

de
rs

Pr
oj

ec
t v

ia
bi

lit
y

(s
ev

er
al

)

M
an

y s
ho

rt
ite

ra
tio

ns
 p

ro
du

ci
ng

 a
 p

ot
en

tia
lly

 c
on

su
m

ab
le

 so
lu

tio
n

ea
ch

 it
er

at
io

n

Ite
ra

tio
n

pl
an

ni
ng

 se
ss

io
n

to
se

le
ct

 w
or

k i
te

m
s a

nd
 id

en
tif

y
w

or
k t

as
ks

 fo
r c

ur
re

nt
 it

er
at

io
n

Ite
ra

tio
n

Figure 5-1: The basic DAD life cycle.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 5: Using Disciplined Agile Delivery (DAD) 37

Id
en

tif
y,

pr
io

rit
ize

,
an

d
se

le
ct

pr
oj

ec
ts

In
iti

al
m

od
el

in
g,

pl
an

ni
ng

, a
nd

or
ga

ni
za

tio
nIn
iti

al
Ar

ch
ite

ct
ur

al
Vi

sio
n

Ne
w

fe
at

ur
es

St
an

da
rd

Re
pl

en
ish

m
en

t
m

od
el

in
g

se
ss

io
n

W
or

k i
te

m
s a

re
pu

lle
d

w
he

n
ca

pa
ci

ty
 is

 a
va

ila
bl

e
to

 a
dd

re
ss

 th
em

Ne
w

fe
at

ur
es

De
m

oFe
ed

ba
ck

Da
ily

 w
or

k

Le
ar

ni
ng

s

Re
tro

sp
ec

tiv
e

St
ra

te
gy

Re
le

as
e

so
lu

tio
n

in
to

pr
od

uc
tio

n

Op
er

at
e

an
d

su
pp

or
t s

ol
ut

io
n

in
 p

ro
du

ct
io

n

Co
or

di
na

tio
n

M
ee

tin
g

En
ha

nc
em

en
t R

eq
ue

st
s

an
d

De
fe

ct
 R

ep
or

ts

Fix
ed

 D
el

ive
ry

 D
at

e

Ex
pe

di
te

In
ce

pt
io

n
Co

ns
tru

ct
io

n
Tr

an
sit

io
n

St
ak

eh
ol

de
r c

on
se

ns
us

Co
nt

in
uo

us
 st

re
am

 o
f d

ev
el

op
m

en
t

Su
f�

ci
en

t f
un

ct
io

na
lit

y

Pr
od

uc
tio

n
re

ad
y

De
lig

ht
ed

 st
ak

eh
ol

de
rs

In
ta

ng
ib

le
Op

tio
ns

In
iti

al
 vi

sio
n

an
d

fu
nd

in
g

In
iti

al
Re

qu
ire

m
en

ts

Figure 5-2: The advanced DAD life cycle.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 38

Goal driven
The DAD process framework strives to meet goals in each
phase (Inception, Construction, Transition). For example,
goals during the inception phase include understanding the
initial scope, identifying a technical strategy, performing initial
release planning, and initiating the team. Each goal then has
different issues to be addressed.

Instead of prescribing a single approach, DAD describes the
goals you need to address, potential strategies for doing so,
and the trade-offs that you face. It also suggests some good
default options to help get you started.

Risk and value driven
The DAD process framework adopts what is called a risk-value
life cycle; effectively, this is a lightweight version of the strategy
promoted by the UP. DAD teams strive to address common
project risks, such as coming to stakeholder consensus around
the vision and proving the architecture, early in the life cycle.
DAD also includes explicit checks for continued project viability,
whether sufficient functionality has been produced, and whether
the solution is production ready. It is also value-driven, in that
DAD teams produce potentially consumable solutions regularly.

Enterprise aware
DAD teams work within your organization’s enterprise
ecosystem, as do other teams, and explicitly try to take
advantage of the opportunities presented to them. Disciplined
agilists act locally and think globally.

These teams work closely with the following teams and
individuals:

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 5: Using Disciplined Agile Delivery (DAD) 39
 ✓ Enterprise technical architects and reuse engineers to

leverage and enhance the existing and “to be” technical
infrastructure

 ✓ Enterprise business architects and portfolio managers to
fit into the overall business ecosystem

 ✓ Senior managers who govern the various teams
appropriately

 ✓ Data administrators to access and improve existing data
sources

 ✓ IT development support people to understand and follow
enterprise IT guidance (such as coding, user interface,
security, and data conventions)

 ✓ Operations and support staff to understand their needs
to ensure a successful deployment (one part of DAD’s
overall support for Development and Operations)

With the exception of start-up companies, agile delivery teams
don’t work in a vacuum. There are often existing systems
currently in production, and minimally your solution
shouldn’t impact them although your solution should leverage
existing functionality and data available in production.

Understanding the DAD Life Cycle
The ongoing goals of DAD include the following:

 ✓ Fulfill the project mission

 ✓ Grow team members’ skills

 ✓ Enhance existing infrastructure

 ✓ Improve team process and environment

 ✓ Leverage existing infrastructure

The DAD life cycle has three phases.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 40

Inception
The first phase of DAD is inception. Before going full-speed
ahead, this phase takes typically between a few days and a
few weeks to initiate the project. The inception phase ends
when the team has developed a vision for the release that the
stakeholders agree to and has obtained support for the rest of
the project (or at least the next stage of it).

Construction
The construction phase in DAD is the period of time when the
required functionality is built. The timeline is split up into a
number of time-boxed iterations. The time-boxed iterations
should be the same duration for a given project — typically
one to four weeks, with two and four weeks being the most
common — and typically don’t overlap. At the end of each
iteration, demonstrable increments of a potentially consumable
solution have been produced and regression tested.

The construction phase ends where there’s sufficient
functionality to justify the cost of transition — sometimes
referred to as minimally marketable release (MMR) — and
which the stakeholders believe is acceptable to them.

Transition
The transition phase focuses on delivering the solution into
production (or into the marketplace in the case of a consumer
product). The time and effort spent transitioning varies from
project to project. This phase ends when the solution is
released into production.

For more information on this topic, see Disciplined Agile Delivery:
A Practitioner’s Guide to Agile Software Delivery in the Enterprise,
by Scott W. Ambler and Mark Lines (IBM Press, 2012).

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 6

Scaling Agile Practices
In This Chapter
▶ Seeing how agile can scale
▶ Incorporating additional roles on large teams

A
gile approaches have been adapted to work in a wide
range of situations, not just the small, collocated team

environments that dominate the early agile literature. Agile
strategies are being applied throughout the entire software
delivery life cycle, not just construction, and very often in
very complex environments that require far more than a
small, collocated team.

Every project team finds itself in a unique situation, with its
own goals, its abilities, and challenges to overcome. What
they have in common is the need to adopt and then tailor
agile methods, practices, and tools to address those unique
situations.

Understanding What
It Means to Scale

In the early days of agile, projects managed via agile
development techniques were small in scope and relatively
straightforward. The small, collocated team strategies of
mainstream agile processes still get the job done in these
situations. Today, the picture has changed significantly and
organizations want to apply agile development to a broader
set of projects.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 42
Organizations often deal with problems that require large
teams; they want to leverage a distributed workforce; they
want to partner with other organizations; they need to comply
with regulations and industry standards; they have significant
technical or cultural environmental issues to overcome; and
they want to go beyond the single-system mindset and truly
consider cross-system enterprise issues effectively.

Not every project team faces all these scaling factors or each
scaling factor to the same extent, but all these issues add
complexity to your situation, and you must find strategies to
overcome these challenges.

To deal with the many business, organization, and technical
complexities your development organization faces, your
disciplined agile delivery process needs to adapt, or scale.
The following sections describe the factors most organizations
encounter when scaling their agile projects.

Large teams
Mainstream agile processes work very well for smaller teams
of 10 to 15 people, but what if the team is much larger? What
if it’s 50 people? 100 people? 1,000 people? As your team-size
grows, the communication risks increase and coordination
becomes more difficult. As a result paper-based, face-to-face
strategies start to fall apart.

Distributed teams
What happens when the team is distributed — perhaps on
floors within the same building, different locations within the
same city, or even in different countries? What happens if you
allow some of your engineers to work from home? What
happens when you have team members in different time
zones? Suddenly, effective collaboration becomes more
challenging and disconnects are more likely to occur.

Compliance
What if regulatory issues — such as Sarbanes Oxley, ISO 9000,
or FDA CFR 21 — are applicable? This may mean that the team
has to increase the formality of the work that it does and the
artifacts that it creates.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 6: Scaling Agile Practices 43

Domain complexity
Some project teams find themselves addressing a very
straightforward problem, such as developing a data entry
application or an informational website. Sometimes the
problem domain is more intricate, such as the need to monitor a
bio-chemical process or air traffic control. Or perhaps the
situation is changing quickly, such as financial derivatives
trading or electronic security assurance. More complex
domains require greater emphasis on exploration and
experimentation, including — but not limited to — prototyping,
modeling, and simulation.

Organization distribution
Sometimes a project team includes members from different
divisions, different partner companies, or from external services
firms. The more organizationally distributed teams are, the
more likely the relationship will be contractual in nature
instead of collaborative.

A lack of organizational cohesion can greatly increase risk to
your project due to lack of trust, which may reduce willingness
to collaborate and may even increase the risks associated
with ownership of intellectual property (IP).

Technical complexity
Some applications are more complex than others. Sometimes
you’re working with existing legacy systems and legacy data
sources that are less than perfect. Other times, you’re building
a system running on several platforms or by using several
different technologies. And at different times the nature of the
problem your team is trying to solve is very complex in its
own right, requiring a complex solution.

Organizational complexity
Your existing organization structure and culture may reflect
waterfall values, increasing the complexity of adopting and
scaling agile strategies within your organization. Or some groups
within your organization may wish to follow strategies that aren’t
perfectly compatible with the way yours wants to work.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 44

Enterprise discipline
Most organizations want to leverage common infrastructure
platforms to lower cost, reduce time to market, improve
consistency, and promote a sustainable pace. This can be
very difficult if your project teams focus only on their
immediate needs.

To leverage common infrastructure, project teams need to
take advantage of effective enterprise architecture, enterprise
business modeling, strategic reuse, and portfolio management
disciplines. These disciplines must work in concert with, and
better yet enhance, your disciplined agile delivery processes.
But this doesn’t come free.

Your agile development teams need to include as stakeholders
Enterprise Architecture professionals — such as enterprise
and solution architects and reuse engineers — if not
development team members in their own right. The enterprise
professionals also need to learn to work in an agile manner,
a manner that may be very different compared to the
way that they work with more traditional teams. For more
information on this topic, visit http://bit.ly/79mLoJ.

Organizing Large Teams
When a disciplined agile team consists of 30 or more people,
it’s considered large. A large team is divided into subteams
(see Figure 6-1). Large teams add explicit roles required for
coordination, particularly those within the leadership team.
These roles for coordination are sometimes referred to as
the coordination team. Large teams sometimes incorporate an
integrator, but this is an optional role and not always used.

The leadership team is typically headed up by someone in the
role of program manager, sometimes referred to as a project
manager, who’s responsible for overall team coordination. As
Figure 6-1 indicates, the leadership team consists of the people
in senior roles on the individual subteams. Together, these
people address the following aspects of team collaboration:

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 6: Scaling Agile Practices 45

Program
Manager

Product
Owner

Team
Leader

Team
Member

Specialist(s)

Technical
Expert(s)

Integrator(s)

Architecture
Owner

Project Management
Team

Project
Owner Team

Architecture
Owner Team

Produces

Produces

Feature/Component

Consumable Solution

Leadership Team

DAD Subteam

Supporting Cast

Domain
Expert(s)

Independent
Testers

Figure 6-1: The structure of a large DAD team.

 ✓ Project management coordination: The individual team
leads are each part of the project management team.
They’re responsible for coordinating fundamental
management issues, such as schedule dependencies,
staffing, conflicts between subteams, and overall cost
and schedule tracking. The program manager typically
heads up the project management team.

 ✓ Requirements coordination: Because there are
dependencies between requirements and between
work items in general, product owners must coordinate
requirements and work items across subteams, including
ensuring that the same requirement isn’t being worked
on unknowingly by two or more subteams and that the
priorities of each subteam are consistent.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 46

 If requirement dependencies aren’t coordinated across
subteams, producing a consumable solution for each
iteration becomes nearly impossible, and the development
process can fall apart. The Chief Product Owner leads
the team of product owners in this effort.

 ✓ Technical coordination: Technical dependencies, such
as the need to invoke services or functions provided by
another part of the solution, exist between each subsystem/
component or feature. This requires the appropriate
subteams to coordinate with one another — work that’s
typically initiated by the architecture owners on each
subteam but often involves other team members as
needed.

 Another aspect of technical coordination is regular
integration of the overall system. Very large or complex
teams have one or more people in the role of integrator —
while the architecture owner is responsible for integration
within their subteam, the integrator(s) is responsible for
solution integration and coordinates accordingly with
the architecture owners and other team members of the
subteams.

The leadership subteams (project management, product
owners, architecture owners) coordinate any issues via team
coordination meetings and electronic means as needed. Many
teams discover that these coordination issues have different
cadences. For example, requirements and technical coordina-
tion occur daily at the beginning of an iteration but diminish
later in the iteration, but project management coordination is
needed daily throughout the iteration.

A greater need exists for shared models, documentation, and
plans, particularly if the team is geographically dispersed.
Use of integrated tooling that’s instrumented to provide key
measures, which in turn are displayed on project dashboards,
can provide greater visibility of what is happening within the
team and thereby aid coordination.

For more information on this topic, see Disciplined Agile Delivery:
A Practitioner’s Guide to Agile Software Delivery in the Enterprise,
by Scott W. Ambler and Mark Lines (IBM Press, 2012).

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 7

Evaluating Agile Tools
In This Chapter
▶ Knowing the key criteria for selecting agile tools
▶ Recognizing the value of an open platform solution
▶ Managing your agile process with Rational Team Concert

T
o support and automate the agile process into your
organization, you can consider incorporating tools that

facilitate a streamlined process for your agile teams. This
chapter helps you make smart decisions when considering
software purchases that serve your agile development needs.

Considering Key Criteria
for Selecting Agile Tools

Each team approaches agile in a different way. Some teams
start small, adopting Scrum and simple approaches using
open source tools, while others require more extensive agile
life cycle management solutions. Regardless of where they
attain them, most agile teams make use of specific agile tools
that help them get the most from their agile process.

Before you decide to use a new tool, determine whether it’s
the best tool for your needs. The easiest way to do this is to
keep these seven key criteria in mind as you make your
selection:

 ✓ Core agile capabilities: First and foremost, the agile
tool must support people over process by facilitating
collaboration, planning, and productivity among the agile
team, product owners, and other stakeholders.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 48
 ✓ Integrated and open agile delivery: The agile tool must

allow you to protect investments in existing tooling and
minimize tool maintenance with simplified integrations.

 ✓ Team collaboration in context: The ability for team
members, customers, managers and stakeholders to
work together in context of the task at hand allows the
team to focus on delivering working software.

 ✓ Life cycle traceability: The ability to understand how
your actions affect others, to find gaps in test coverage,
and be aware of defects that are blocking progress
help your team identify and mitigate potential risks and
reduce friction across the agile delivery life cycle.

 ✓ Agile development analytics: Arming managers and agile
team members with real-time metrics to make informed
decisions helps reduce friction and accelerate the
velocity of agile teams.

 ✓ Adaptability and flexibility: Your tool should support
your team regardless of its process or size. Look for
adaptable process support that evolves as your needs
change.

 ✓ Agility at scale: As your organization grows, it most
likely needs a well-defined agile scaling process, team
structure, and tooling to address real-world complexities,
such as those faced by distributed teams or teams
addressing compliance requirements.

The right tools can help you succeed, regardless of your entry
point. Your challenge is to identify your greatest need today,
the improvements you need to make to current practices, and
whether new tools are really the solution.

For more information on evaluating agile tools, visit www.ibm.
com/rational/agile.

Exploring the Jazz Initiative
Inspired by the artists who transformed musical expression,
Jazz is an initiative to transform software and systems delivery
by making it more collaborative, productive, and transparent
through integration of information and tasks throughout the
delivery life cycle. The Jazz initiative consists of three elements:

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 7: Evaluating Agile Tools 49
 ✓ Platform: The Jazz platform is an open and flexible

platform, which allows for greater integration capability.

 ✓ Products: In keeping with agile principles, Jazz products
are designed to put the team first.

 ✓ Community: The Jazz community site is the live
development infrastructure for the Jazz technology and
products.

Using the Best Tool for the Job
The ideal agile tool addresses project planning, work item
tracking, source code management, continuous builds, and
adaptive process support, enabling agile project teams and
stakeholders to work together effectively.

IBM Rational Team Concert (RTC) is built on the Jazz platform
and provides all these features in one integrated tool to help
the project team collaboratively plan, execute, and deliver
working applications. The following sections describe the
key capabilities RTC offers to support agile teams. For more
information on RTC features, visit https://jazz.net/
projects/rational-team-concert/features.

RTC provides core capabilities, including source code manage-
ment optimized for distributed teams; continuous integra-
tion supporting personal, team, and integration builds; and
customizable work item tracking to support agile and formal
teams.

Process awareness and
customizability
Regardless of the size or maturity of your agile team, your
agile tooling should give you the ability to deploy, customize,
enact, and improve agile processes. RTC can improve the
productivity of your teams and the quality of the work they
produce by allowing each team to teach the tool its best
practices. RTC uses this knowledge to automate team processes,
allowing team members to focus on building great software.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 50

Team awareness
Your agile tooling should make collaboration easier across
all stages of the life cycle. All team members, including
stakeholders, should have access to real-time, role-relevant
information with full traceability to related tasks, as well as
the ability to easily make contributions to projects.

RTC knows your project teams, their internal organization,
and the artifacts they are working on. It greatly simplifies the
access to team-related information or performing team-related
operations. In addition, RTC integrates with Lotus Sametime,
GoogleTalk, and Skype, which help enhance collaboration
when teams are geographically distributed.

Planning
Agile planning is all about keeping everyone on the same page
and marching to the same beat. RTC provides capabilities
to create product, release, and iteration plans for teams; to
create individual plans for developers; to track the progress
during an iteration; and to balance the workload of developers.
In addition, RTC provides planning views to support different
agile approaches including Taskboards for daily standups and
Kanban to manage flow (see Figure 7-1). RTC also provides
cross-project plans that allow tracking of work items that
have dependencies on other work items in other projects.

Figure 7-1: The Taskboard planning view.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

https://jazz.net/projects/rational-team-concert/features/planning

 Chapter 7: Evaluating Agile Tools 51

Regardless of the process used, plans are accessible to
everyone on the team via the web, Eclipse, or Visual Studio.
All plans change dynamically over the course of the project to
reflect the team’s position and direction.

Transparency/project health
Transparency and the ability to monitor status in real-time is
vital to a successful agile project. Team members should have
visibility to potential issues that could impede their progress,
and managers need to have real-time information to proactively
manage risks.

The RTC dashboards and reports help all team members
keep tabs on the health of their projects. The Web Dashboard
(Figure 7-2) provides a personalized view of plan status, work
items, event feeds, reports, and other items that are critical to
understanding your progress. Reports provide both real-time
views and historical trends of velocity, builds, streams, work
items, and other artifacts that your team works with. In
addition, RTC supports the use of OpenSocial Gadgets and
IBM iWidgets to extend visibility to other commercial and
open source life cycle tools.

Figure 7-2: Web Dashboard.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

https://jazz.net/projects/rational-team-concert/features/report

Agile For Dummies, IBM Limited Edition 52

Broad Platform Support
The trend toward more interconnected mobile and cloud sys-
tems is leading to an increasing number of cross technology
development projects that are deployed on multiple target
platforms. RTC provides the ability to centrally manage, develop,
and track multi-platform projects, providing visibility to all
team members and stakeholders. RTC supports popular
development platforms, including Windows, Linux, IBM
System z, IBM Power, and Solaris.

RTC not only provides cross platform support but also
provides integrated development environments (IDE) for
Eclipse and Microsoft Visual Studio that allow developers
to collaborate across teams, track projects, manage source
code, resolve defects, and execute builds.

Extending tooling beyond
core agile development
While RTC serves as the core agile development tool, IBM
Rational also provides depth and breadth of tools that allow
organizations to adapt and automate beyond development
across the entire life cycle. Depending on which scaling
factors apply (see Chapter 6), organizations can extend RTC
with a vast portfolio of capabilities including: more vigorous
requirements envisioning and management, test management,
deployment automation, architecture and asset management,
and business collaboration.

In addition, leveraging the Jazz platform RTC can be integrated
with popular open source tools, including Subversion, Git,
CVS, Maven, Hudson, and Jenkins. For a complete list of inte-
grations see www.jazz.net/projects/rational-team-
concert/integrations.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

https://jazz.net/projects/rational-team-concert/features/enterprise

Chapter 8

Making the Move to Agile:
IBM’s Story

In This Chapter
▶ Empowering development teams
▶ Creating processes to work with distributed teams
▶ Tooling up for success
▶ Seeing the benefits of using agile

I
n 2006, IBM faced a unique challenge. In a period of about
five years, the company made 70 software acquisitions

with 90 major labs and employed a variety of people who
worked remotely. This feat translated to approximately 27,000
people working over five continents. And, yet, IBM struggled
in the software development area.

In the IBM Rational organization, for example, IBM only
delivered software on time 47 percent of the time. The cost
of poor quality was high. The company released products
with defects or delayed releases until defects were fixed. As a
result, products that were supposed to be high-flyers actually
crash-landed because the cost of fixing defects was so high.
IBM also used tools that didn’t integrate with each other.

IBM needed to be more agile. The success of IBM’s agile
adoption depended on significant changes in three key areas:
the people, the adopted processes, and the implemented
tools for success.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 54

Setting Teams Up for Success
Agile requires empowering people to make the significant
change in how software is developed. IBM made adjustments
with the areas covered in this section.

Training
IBM helped the software teams change by setting up a center
of excellence, holding a two-day disciplined agile workshop
that trained approximately 9,000 people over a period of two
years, and running additional focused workshops for in-depth
training on practices that included a collaborative leadership
workshop. IBM identified key resource dependencies (either
people or technology) and made them available to the teams
when they needed help adopting agile.

Collaboration capabilities
Although studies show that face-to-face collaboration is best
for agile development, in IBM’s case, it wasn’t always possible.
So the company deployed tools, such as IBM Rational Team
Concert (see Chapter 7 for more info), that could bring large
teams together. This included support for team members
sharing immediate office space or sitting on the other side of
the globe. These tools informed individual users, teams, and
teams of teams about project changes as they happened.

IBM also enabled continuous planning and change management.
So, if a project lead and management had a conversation
about a change, everyone on the team was notified about it,
the reason for it, who’s affected, and how they’re affected.
These tools also have repositories so plan and work items can
be stored and used in the future by others.

Changing culture
A change in culture can be a challenge for some people. In a
number of cases, particularly at the beginning, some teams
struggled to accept or adopt agile because they were so
dispersed, and their components were done in different
geographic locations. So, IBM sent a coach who understood

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 8: Making the Move to Agile: IBM’s Story 55
agile to each location for three to six months. Having an agile
practitioner in these locations was worth the cost, because
the rate of failure dropped.

IBM also had to change the views of development at the top.
The executives were used to having an initial state and plan
and relating them to waterfall measurements. They worked to
accept that scope changes over time and that this was a good
thing — as long as IBM kept release rates and quality levels
the same (or better).

Changing roles
To support evolving culture to a more agile strategy, IBM used
automation to support new habits and get rid of old ones.
For example, traditional project managers used to canvas
individuals about progress, but by the time they could enter
the notes into a spreadsheet, the team had moved to the next
activity. Now, tools track progress and agile team leads focus
on how people work with each other. At the same time, the
team leads refocused on leadership activities over technical
management activities, thereby adding greater value to their
teams and to IBM as a whole.

Team structure
Because IBM’s complex products vary from testing tools to
compilers to database management systems to application
servers and more, it needed to have more than one type of
team. So, IBM created teams, depending on the types of
capabilities it was looking for, via the following strategies:

 ✓ Feature teams: Responsible for a complete customer
feature (products and components). The goal was to
optimize customer value. Feature teams minimize
dependencies, use iterative development, and track
dependencies between adoptions with an adoption tool.

 ✓ Component teams: Responsible for only part of a
customer feature. The development is more sequential
and dependencies between teams lead to additional
planning. They track execution in plan items — either in
work areas or work items.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 56
 ✓ Internal open source: When a component needs to

evolve quickly yet is needed by multiple development
teams, IBM uses open source strategies as an effective
development method. IBM has deep experience in open
source development, so this was an easy team structure
to adopt.

Updating Processes for
Distributed Teams

After agile was implemented in a number of development
teams, some teams were successful, but many more teams
had trouble. The teams with the most success were housed in
a single location and collaborative. The teams that struggled
were globally distributed with hundreds of people. IBM realized
that it had to change some processes to make agile work
better in these distributed teams.

A big change was in IBM’s auditable process, which, in 2006,
was to “ask for forgiveness” if quality, scope, resources, and
time to market changed. This process took a great deal of
time and effort, so IBM approached scope differently, while
still locking in the other pieces of the project, by dividing it
into two types:

 ✓ Release-defining scope: Usually consumes about 70
percent of the schedule, which is all the things that will
cause the project to slip if problems arise.

 ✓ Extended content: Consists of things that won’t cause
problems if they aren’t shipped.

IBM is now better at delivering what’s release defining and,
and in almost all cases, additional content that its customers
and sales force don’t know about in advance. This improvement
reduced time and effort spent asking for forgiveness. Also,
IBM teams have a clearer picture of what’s important and
what’s optionally important.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 8: Making the Move to Agile: IBM’s Story 57
Other changes IBM made to its processes are as follows:

 ✓ Work with stakeholders every iteration for timely and
effective feedback

 ✓ Organize its agile methodology into smaller, consumable
practices that can be adopted easily

 ✓ Make all parts of the production process agile, not just
development

 The goal was to make it difficult to go back to old
waterfall ways, and the process has been successful.

 ✓ Adopt a robust planning strategy

 Each activity, whether it was going on vacation or
writing code or testing, is a work item that’s estimated
and prioritized.

Working with New Tools
Because IBM is a large organization, it has to be intentional
about the way it communicates and collaborates. IBM
determined that tooling was necessary to provide a way for
teams to exchange information and stay on the same page —
much like smaller teams do.

The key to collaboration is that teams want a way to
collaborate and exchange information in a way that feels
natural. Posting a bunch of information to a wiki won’t get
people to pay attention. Exchanging information has to feel
natural to and fit into the context of the teams’ work.

IBM instituted technology that unified people beyond just
the development team, including documentation, training,
translation, and release management. Everyone could see the
status on complementary work activities that took place. This
innovation created better visibility to overall team progress.

When you have a transparent view of the work items that
are complete, the items that still need to be done, and team
visibility into how certain tasks are taking more effort than
originally scoped, they help the team get better at agile
planning and drive conversations about whether the team
needs to realign resources to stay on track.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 58

Reaping the Benefits of Agile
IBM’s agile transformation took some adjustments. The company
made some mistakes along the way, sure, but it learned from
them and has now experienced extensive improvements in qual-
ity, time-to-market, and customer satisfaction. IBM is proof that
the rewards of agile adoption far outweigh the obstacles.

IBM’s results from agile adoption include the following:

 ✓ A 31/69 percent ratio of maintenance to innovation (start
was 42/58 and goal was 50/50)

 ✓ Customer touches increased from 10 to 400
 ✓ Customer calls decreased to 19 percent
 ✓ Customer defect arrivals decreased from 6,900 to 2,200
 ✓ Defect backlog reduced to 3 months from 9 months or more
 ✓ Reduced cost of poor quality (cut almost in half)

The software reuse initiative
Component reuse is one the holy
grails of software development. If you
reuse code, you typically get better
quality and productivity, reduced risk
of development efforts, and more
consistency for your user experience.
You can try to mandate reuse, but that
really doesn’t work well. So instead,
IBM created a site that emulated an
open source environment and called
it community sourcing. With this site,
developers can create their own
projects, share those projects with
others, gain access to the code, and
decide whether the projects meet
their needs. By using a combination of
Rational Team Concert, Rational Asset
Manager, and Lotus Connections, IBM
provided an environment conducive to
community and sharing.

IBM now has over 30,000 developers
using the community source site
and 4,800 uses of components in
its products now. For example,
a component that helps IBM’s
installation has been reused by 152
products, and one component for
security has been used by 175 projects.

One of the nice benefits of this type of
community sourcing initiative is that it
connects people in new and exciting
ways. IBM has seen people reaching
across divisions and functional
boundaries because they were using
a common component. With the
community source site, this type of
collaboration happens organically.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 9

Ten Common Agile
Adoption Pitfalls

In This Chapter
▶ Knowing what mistakes to avoid
▶ Creating a better agile adoption experience

T
he ability to avoid common agile adoption pitfalls may
seem daunting, but there’s a light at the end of the tunnel.

With over 10 years of experience helping customers manage
and execute their agile transformations, we present you with
this chapter to help briefly explore some common pitfalls
organizations make when adopting agile strategies. And
hopefully, with this advice, you can skip over making the
same mistakes.

Focusing Only on Construction
You can realize the spirit of the Agile Manifesto through many
approaches. Ironically, most of these approaches focus on
one phase or discipline within the delivery life cycle — which
goes against the spirit of lean, which advises to consider the
whole. Most approaches focus on the construction phase.

Construction is typically a straightforward area to focus on
when taking on an agile transformation, but if organizations
only change the way they construct software, they can’t
necessarily call themselves agile. The development teams
could be humming along, delivering new working software
every two weeks, but if the processes in Operations only
allow for deployment every six months or if the Help Desk is

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 60
unable to handle the churn or if customer stakeholders aren’t
prepared to meet regularly, the organization isn’t realizing all
the benefits agile can provide.

Becoming Agile Zombies
Organizations fall into the trap that if they attend a class and
mandate a certain out-of-the-box (OOTB) process, that they
are now agile. They train their teams to blindly follow and
enforce the anointed process not considering which practices
may need to change to meet their organizations’ unique needs.

Agile isn’t a prescribed process or set of practices; it’s a
philosophy that can be supported by a practice and no two
agile approaches are the same. One OOTB methodology that
fulfills all needs doesn’t exist.

Improper Planning
That old adage, “If you fail to plan, plan to fail,” is really
true. Planning is core to the success of any agile adoption.
Organizations should answer these questions:

 ✓ Why do we want to be agile, and what benefits will agile
provide?

 ✓ How will we achieve and measure agility?

 ✓ What cultural, technological or governance barriers
exist, and how do we overcome them?

 Without a plan that clearly shapes the initiative and
includes addressing and resolving constraints to agility
(for example, removing waterfall process checkpoints or
getting support from other required entities), it is more
difficult to shape the initiative, staff it, fund it, manage
blockers and maintain continued executive sponsorship.

Excluding the Entire Organization
You can quickly short circuit an agile adoption by working in
the vacuum of a single software or system delivery team. A
single team can gain some benefit from agile, but to be truly

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 9: Ten Common Agile Adoption Pitfalls 61
successful, you need to look at the whole process around
solution delivery. And many people are involved in that process.

Agile should be a change in culture for the entire organization.
Find champions in Operations, lines of business, product
management, Marketing, and other functional areas to
increase your success.

Lack of Executive Support
An effective agile adoption requires executive sponsorship at
the highest level. This involvement means more than showing
up at a kickoff meeting to say a few words. Without executive
sponsorship supporting the overall initiative, the agile adoption
is often doomed because agile initiatives require an upfront
investment of resources and funding — two areas that
executives typically control.

Going Too Fast
Moving to agile is very exciting, and it can be tempting to
jump right in, pick a process, get some tools, and hit the
ground running. Unfortunately, if a proper roadmap for
coaching, process, and tooling isn’t outlined early in the
adoption you can run into issues like the following:

 ✓ No defined processes for dealing with multiple dependent
or distributed teams

 ✓ Scalability issues with the core agile tools

 ✓ Extending the tool to support deployment, testing, or
business collaboration

Insufficient Coaching
Because an agile adoption isn’t just a matter of a new delivery
process, but is also major cultural shift, coaching is imperative.
Developers don’t like change and many people like working in
their own world. As a result, the concept of not only changing
the way they develop, but adding the concept that now they
have to work closely with five, six, or ten other people all the
time can be downright horrifying.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 62
A coach can work with these team members and help them
through the early phases of agile adoption. Have you known
of a teacher or coach that possessed a unique ability to
inspire students to stretch their skills and perform at higher
levels? Good agile coaching can have the same affect and
make the difference between the success and failure of an
agile adoption.

Retaining Traditional Governance
When an organization plans its agile adoption, it needs to
evaluate all current processes and procedures and whether
they inhibit or enhance agility. Existing traditional governance
processes can be very difficult to change due to internal
politics, company history, or fear that compliance mandates
may be negatively impacted. Some common governance areas
that are overlooked but can have dramatic impacts to agility
are project funding, change control, and phase gates.

Skimping on Training
Organizations often see agile practice training, like coaching,
as an area where they can save money, sending only a few key
leads to learn the new process in hopes that they can train
the rest of the organization while trying to implement the new
approach. Agile involves a change in behavior and process. It
is critical to send all team members to the appropriate training
and provide them with ongoing training to reinforce agile
values and update team members on processes that may
have changed.

Skimping on Tooling
Agile tooling should support and automate an organization’s
process. Ensuring all team members consistently use
tools impacts the success of the project. If tools are used
inconsistently, metrics may not correctly reflect the correct
status, builds could be run incorrectly, and overall flow and
quality issues result. See Chapter 7 for more information on
agile tools.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 10

Ten Myths about Agile
In This Chapter
▶ Sorting agile facts from the fiction
▶ Understanding how agile can work for you

A
lthough agile is an established development approach,
it represents a new way of life for the organizations that

adopt it. The prospect of working in iterations instead of with
a linear approach is unsettling to managers and developers
who are deciding whether to make the leap to agile. They fear
that focused efforts will be compromised and that control over
projects and development teams will be sacrificed. Nothing is
further from the truth.

This chapter debunks these myths and others to show that
agile is most organizations’ best bet for success.

Agile Is a Fad
The agile approach to project management is far from a fad.
Agile has been in use for many decades even though it was
only recently formalized with the Agile Manifesto and its
associated principles. Agile exists because it works. Compared
with traditional project management approaches, agile is
better at producing successful projects.

Agile Isn’t Disciplined
Sometimes agile can seem chaotic because it’s a very collabora-
tive process. Agile is a departure from the rigid assembly-line
process. The iterative approach requires rapid response times
and flexibility from the team. In fact, agile demands greater

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 64
discipline than what’s typical of traditional teams. Agile
requires teams to reduce the feedback cycle on many activities,
incrementally deliver a consumable solution, work closely with
stakeholders throughout the life cycle, and adopt individual
practices which require discipline in their own right.

Agile Means “We Don’t Plan”
With agile’s reliance on collaboration instead of big documents,
it may seem like no planning occurs. But in reality, the planning
is incremental and evolutionary, which has been proven suc-
cessful (instead of planning all at once early in a project).

Agile Means “No Documentation”
Agile teams keep documentation as lightweight as possible,
but they do document their solutions as they go. They follow
strategies, such as documenting continuously and writing
executable specifications.

Agile Is Only Effective
for Collocated Teams

Sure, ideally agile teams are located within proximity of one
another, but in this day and age, most development teams are
distributed. Just remember, to succeed, you need to adopt
practices and tooling that build team cohesion. If you use the
proper tools, your team doesn’t have to be collocated to work
effectively together.

Agile Doesn’t Scale
Agile definitely scales. Large teams must be organized dif-
ferently. They need more than index cards and whiteboard
sketches. Large agile teams succeed by using products like
the following:

 ✓ IBM Rational Requirements Composer for requirements
modeling

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 10: Ten Myths about Agile 65
 ✓ IBM Rational Build Forge for large-scale continuous

integration

 ✓ IBM Rational Quality Manager to support parallel
independent testing

IBM is one of the world’s largest agile adoption projects,
transforming teams ranging in size from 5 to 600 team
members. For more information on agility at scale, visit
ibm.com/rational/talks.

Agile Is Unsuitable for
Regulated Environments

Regulated environments are those that are subject to some
regulatory mandates, such as medical device companies,
business in the finance area, governmental departments and
offices, the healthcare field, and more. These organizations
are audited from time to time for compliance with regulations.
With agile, these organizations can feel confident when they
endure these audits. They benefit from faster delivery of data
and higher quality of their output.

Agile Means We Don’t Know
What Will Be Delivered

Because agile is an iterative process, it provides the opportunity
not just for greater control but better control over building the
right things in the life cycle than one would have with the more
traditional Waterfall approaches. At the end of each iteration, the
development team presents a completed product to the product
owner for feedback. Furthermore, Disciplined Agile Delivery
(DAD) teams explicitly explore high-level requirements at the
beginning of the project and seek to gain stakeholder agreement
around the requirements. See Chapter 5 for more details.

Agile Won’t Work at My Company
For many companies, the biggest challenge they face when
considering changing to agile is the cultural change making

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Agile For Dummies, IBM Limited Edition 66
the change requires. Agile has explicit means of frequent
feedback and loops, which means that developers and managers
may feel more exposed to scrutiny. But that doesn’t mean that
agile won’t work at your company.

Agile is a team approach. It’s not like football where one
player at a time moves the ball down the field to score a
touchdown. Agile is more like rugby — the whole team moves
the ball down the field together. Roles are cross-functional
and shared. Developers become testers and more frequent
delivery creates more exposure and personal accountability.

For an organization to successfully adopt agile, executive
support is also critical. Agile can succeed without it, but if you
hit a bump in the road, you’ll want that vote of confidence to
help you keep everything moving in the right direction.

It’s Enough for My Development
Team to Be Agile

For agile to work properly, all teams have to buy in. So if your
development team is gung ho, but your testing team is blasé,
you won’t get your best results. Your agile delivery process is
only going to be as effective as your slowest group. To make
agile succeed at its greatest potential, make each piece of the
chain as efficient as possible.

Agile Is a Silver Bullet
Agile isn’t needed for every team in every situation. It isn’t
a cure-all. Agile is a superb solution for projects that are in
development or undergoing radical changes. For other projects,
such as those that are in maintenance mode, agile isn’t as
good a fit. If your project has a stable customer base and isn’t
undergoing a lot of change in the code, you may not need to
use agile for that particular project. But for projects that are
under new product or rapid development, agile really is the
best way to go.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

	Agile For Dummies®, IBM Limited Edition
	Table of Contents
	Publisher's Acknowledgments
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book

	Chapter 1: Getting the ABCs of Agile
	Looking Back at Software Development Approaches
	Introducing the Agile Manifesto
	Redefining Today’s Agile

	Chapter 2: Understanding Agile Roles
	Being a Stakeholder
	Representing Stakeholders: The Product Owner
	Being a Team Member
	Assuming the Team Lead
	Acting As the Architecture Owner
	Stepping Up As an Agile Mentor
	Looking at Agile Secondary Roles

	Chapter 3: Getting Started with Agile
	Agile Planning
	Attending the Daily Coordination Meeting
	Creating User Stories
	Estimating Your Work
	Tracking Velocity
	Measuring Progress with Burndown Reports
	Test-Driven Development
	Continuous Integration and Deployment
	Presenting Results at the Iteration Review
	Collecting Feedback in the Iteration Review Meeting
	Learning and Improving at the Iteration Retrospective

	Chapter 4: Choosing an Agile Approach
	Scrum: Organizing Construction
	XP: Putting the Customer First
	Lean Programming: Producing JIT
	Kanban: Improving on Existing Systems
	Agile Modeling
	Unified Process (UP)

	Chapter 5: Using Disciplined Agile Delivery (DAD)
	Understanding the Attributes of DAD
	Understanding the DAD Life Cycle

	Chapter 6: Scaling Agile Practices
	Understanding What It Means to Scale
	Organizing Large Teams

	Chapter 7: Evaluating Agile Tools
	Considering Key Criteria for Selecting Agile Tools
	Exploring the Jazz Initiative
	Using the Best Tool for the Job

	Chapter 8: Making the Move to Agile: IBM’s Story
	Setting Teams Up for Success
	Updating Processes for Distributed Teams
	Working with New Tools
	Reaping the Benefits of Agile

	Chapter 09: Ten Common Agile Adoption Pitfalls
	Focusing Only on Construction
	Becoming Agile Zombies
	Improper Planning
	Excluding the Entire Organization
	Lack of Executive Support
	Going Too Fast
	Insufficient Coaching
	Retaining Traditional Governance
	Skimping on Training
	Skimping on Tooling

	Chapter 10: Ten Myths about Agile
	Agile Is a Fad
	Agile Isn’t Disciplined
	Agile Means “We Don’t Plan”
	Agile Means “No Documentation”
	Agile Is Only Effective for Collocated Teams
	Agile Doesn’t Scale
	Agile Is Unsuitable for Regulated Environments
	Agile Means We Don’t Know What Will Be Delivered
	Agile Won’t Work at My Company
	It’s Enough for My Development Team to Be Agile
	Agile Is a Silver Bullet

